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1.0 Introduction

The Case 2 chlorophydi algorithm is based on a semi-analytical, bio-optical model of remote-
sensing reflectance, ), where R(1) is defined as the water-leaving radiancgAl), divided by the
downwelling irradiance just above the sea surfaged,, ). TheR (1) model has two free variables,
the absorption coefficient due to phytoplankton at 675a(675), and the absorption coefficient due to
gelbstoff at 400 nmg,(400). TheR, model has several parameters that are fixed or can be specified
based on the region and season of the MODIS scene. These control the spectral shapes of the optical
constituents of the modd®(A,) values from the MODIS data processing system are placed into the
model, the model is inverted, aag(675),a,(400) (MOD24), and chlorophyd (MOD21, chlor_a_3)
are computed. MODIS algorithms are parameterized for three different bio-optical domains: (1) high
photoprotective pigment to chlorophyll ratio and low self-shading, which for brevity, we designate as
“unpackaged”; (2) low photoprotective pigment to chlorophyll ratio and high self-shading, which we
designate as “packaged”; and (3) a transitional or global-average type. These domains can be identified
from space by comparing sea-surface temperature to nitrogen-depletion temperatures for each domain.
Algorithm errors of more than 45% are reduced to errors of less than 30% with this approach, with the
greatest effect occurring at the eastern and polar boundaries of the basins. The algorithm also outputs
both the total absorption coefficientsAa(MOD36), and permits calculation of the phytoplankton
absorption coefficients,,@\;) (MOD36), based og,(675) retrievals. These are used in MOD22 in the
calculation of the absorbed radiation by phytoplankton, ARP, for use in MOD20 for calculation of

fluorescence efficiencies.

2.0 Overview and Background Information

According to the optical classification bjorel and Prieur[1977], oceanic waters may be
characterized as case 1, in which the optical properties are dominated by chlorophyll and associated and
covarying detrital pigments, or as case 2, in which other substances, which do not covary with
chlorophyll, also affect the optical properties. Such substances include gelbstoff, suspended sediments,
coccolithophores, detritus, and bacteria. Pigment retrievals from Coastal Zone Color Scanner (CZCS)
data in case 1 waters have achieved reasonable results (+ 40% for local beSGaraleesdt al. 1983]).
However, substances not covarying with chlorophyll in case 2 waters have caused the retrieval of
pigment concentrations to have inaccuracies as high as 138%efr et al, 1991].

Marine colored dissolved organic matter (CDOM), also called gelbstoff, absorbs light in an
exponentially decreasing manner as a function of wavelength. Pheopigments, detritus, and bacteria

similarly absorb more strongly at 412 nm than they do at 443 nm. Phytoplankton, on the other hand,
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absorb more strongly at 443 nm than at 412 nm. Thus, by measuring the relative amounts of light leaving
the sea surface at those two wavelengths, we can estimate the relative amounts of phytoplankton and the
other absorbing products mentioned above.

Winter convective over turn of the upper ocean layer also mixes up gelbstoff-rich deeper waters
that have not been photo bleached as have summer surface waters. These waters appear in CZCS data as
being more chlorophyll rich than measurements and models indBiate[ and Michae]s996].

The remote sensing reflectariRgmodel used to develop the algorithm presented here has a few
parameters that cannot be fixed and applied to the entire globe; that is, they are site and season specific.
This is due to the inherent variability of many bio-optical constituents. For example, absorption at 440
nm per unit chlorophyla by phytoplankton can change with species and with nutrient and lighting
conditions by as much as a factor oMofel and Bricaud 1981;Kirk, 1983;Carder et al, 1991;Morel
et al, 1993]. In addition, particle size and concentration have significant effects on the spectral
backscattering coefficieft,(1) of ocean water; pure water backscatter varies’as, large-particle
backscatter varies asA™, and backscatter by smaller-diameter detritus and bacteria varies with a
spectral dependence between the two extreMese] and Ahn1990, 1991].

Many of these factors covary, allowing the simple wavelength-ratio algorithms of the CZCS
[Gordon and Morel1983] to work fairly well. We have tried to understand many of these individual
covariances and have developed empirical expressions for several individual bio-optical variables. By
analyzing individual components of the model, we can gain a deeper understanding of the processes
affecting the color of water-leaving radiance.

To the extent that such covariances change with season or bio-optical domains [Brigusee
and Sathyendranatl1981;Sathyendranath et al1989;Mitchell and Holm-Hansernl991], we must
consider temporal and spatial changes in algorithm parameterization. A strategy for partitioning the
ocean into at least three different bio-optical domains on the basis of nutrient-temperature relationships,
each with different model parameters, is discussed in section 6. Initially, model development is focused

on tropical and subtropical environments.

2.1 Experimental Objective

The main data product is chlorophgltoncentration, [chd], which can be used as an indicator
of plankton biomass, as an input to primary production models, or to trace oceanographic currents, jets,
and plumes. Other output products ay@®45), g(400), g(A), and ak;). a,(%) is used in the IPAR/ARP
MODIS algorithm. g400) by itself can be used to map river plumes, to determine diffuse attenuation at

that wavelength, or to calculate dissolved organic carbon (DOC) standing stocks and fluxes. In order to
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calculate DOC, we need to know how DOC concentration is related to DOC absorption. As coastal,
estuarine, and other Case 2 environments become increasingly recognized as important areas of study,

algorithms that can deal with the complex bio-optical properties of these regions are required.

2.2 Historical Perspective

CZCS algorithms for estimating [ch] plus pheophytira concentrations perform quite well for
regions of the ocean where scattering and absorbing components of seawater covary with these pigments,
i.e., in Case 1 waters (Gordon and Morel, 1983; Gordon et al., 1983). A number of empirical and semi-
analytical optical models have been developed to simulate the behavior of the underwater light field for
such waters (Morel and Prieur, 1977; Baker and Smith, 1981; Baker and Smith, 1982; Gordon et al.,
1988; Morel, 1988; Mitchell and Holm-Hansen, 1991). Such models have been used as the basis for
classifying water types and/or for developing remote sensing algorithms.

However, the accuracies of these models decrease when environmental conditions depart from
those representative of the data set used to empirically derive the covariance relationships. For instance,
CDOM is produced when grazing, photolysis, and other mechanisms degrade the viable plant matter at
and downstream from phytoplankton blooms. The CDOM-to-chlorophyll ratio will change dramatically
for a parcel of upwelled water over a relatively short time, from chlorophyll-rich and CDOM-poor to
CDOM:-rich and chlorophyll-poor. Solid evidence for the occurrence of this scenario can be found in
two separate studies. Peacock et al. (1988) found that absorption attributed to CDOM at 440 nm was at
least 16 fold that due to phytoplankton pigments within an offshore jet from an upwelling region,
whereas pigments were the dominant absorption agents at the upwelling center near the coast. Similarly,
Carder et al. (1989) found that particulate absorption at 440 nm decreased 13 fold while CDOM
absorption at 440 nm increased by 60% in ten days for a phytoplankton bloom tracked from the
Mississippi River plume to Cape San Blas. This widely varying CDOM-to-chlorophyll ratio has a
profound effect on upwelled radiance in the blue 443 nm band of the CZCS, and a smaller but still
significant effect in the green 520 nm band. The correspondence in absorption at 443 nm and 520 nm
between CDOM and chlorophyll creates erroneously high estimates of pigment concentration in those
models which rely solely upon either of these spectral bands to indicate absorption due to phytoplankton.

Carder et al. (1991) proposed that a short wavelength channel at around 410 nm could be used to
distinguish CDOM (and other degradation products) from chlorophyll. A channel at 412 nm will be
available not only on MODIS, but also on the Ocean Color and Temperature Scanner (OCTS) and on the
Sea-Viewing-Wide-Field-Sensor (SeaWiFS). The Case 2 chloraphiglorithm will be thoroughly
tested during the SeaWiFS project.



2.3 Instrument Characteristics

The algorithm requires input of the water-leaving radidncat the MODIS ocean wave bands
centered at 412, 443, 488, and 551 nm, respectively, and bio-optical domains are designated based upon
sea-surface temperature (section 5), a derived product of M@®DIS derived from the water-leaving
radiancel,, [Gordon and Wangl994], aRR, = L,(F, cos0 t))*, whereF, is the extraterrestrial solar
irradiance and is the solar zenith angle. The 1000 m resolution, new spectral bands, and near-daily
coverage of MODIS will allow the observation of mesoscale oceanographic features in coastal and
estuarine environments, areas seen to be increasingly important in many marine science studies in

addition to traditional open-ocean observations.

3.0 Algorithm Description

Morel and Gordor{1980] describe three approaches to interpret ocean color data in terms of the
in situ optical constituents: empirical, semiempirical, and analytical. In the analytical approach, radiative
transfer theory provides a relationship between upwelling irradiance or radiance and the in situ
constituents [e.gSathyendranath and Platt997]. Then, constituent concentrations are derived from
irradiance or radiance values measured at several wavelengths by inversion of the resultant system of
equations. The MODIS algorithm uses this approach, with the term "semi analytical" invoked because
bio-optial pieces of the radiative model are expressed by empirical relationships. The algorithms

developed herein have been peer reviewed and appear in candensed form in Carder et al. (1999).

3.1 Theoretical Description
3.1.1 Physics of Problem

After light enters the ocean, some of it is eventually scatters back up through the surface. This
light is called the water-leaving radiancg1), and it can be deduced from space after removal of
atmospheric effects. The magnitude, spectral variation, and angular distribution of this radiance depend
on the following factors: the absorption and backscattering coefficients of the seaatandb,(1),
respectively (known as the inherent optical properties); the downwelling irradiance incident on the sea
surfaceEy(4,0%); and the angular distribution of the light within the ocean. To make things easier, we
divide seawater into three components, each one having distinct optical properties of its own. These
components are the seawater itself (water and salts), the particle fraction, and the dissolved fraction.
Fortunatelya(A) is simply equal to the sum of the absorption coefficients for each componehf(’gnd
is equal to the sum of the backscattering coefficients. If we can accurately describe or model each

spectrally distinct component of the absorption and backscattering coefficients, then we can determine
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the magnitude of each one from measuremeritg(dj andE,(0",A), given some assumptions about the
angular distribution of light in the water. The key here is to accurately model the spectral behavior of

a(A) for each component. The spectral behavidy,@f) is not as dynamic.

3.1.2 Mathematical Description of Algorithm
3.1.2.1 R, Model

The R, model is given by the following general equation, which is adapted from Lee et al.
(1994):

b (A
R (4) = St oY
" Q(A) n* [a(A) + Db, ()]

(1)

where f is an empirical factor averaging about 0.32—0.33 (Gordon et al., 1975; Morel and Prieur, 1977,
Jerome et al., 1988; Kirk, 1991), t is the transmittance of the air-sea interfagés @e upwelling
irradiance-to-radiance ratiq&)/L (1), and n is the real part of the index of refraction of seawater. By
making three approximations, Eq. 1 can be greatly simplified.

1) In general, fis a function of the solar zenith angj€Kirk, 1984; Jerome et al., 1988; Morel
and Gentili, 1991). However, Morel and Gentili (1993) have shown that the ratio f/Q is relatively
independent o, for sun and satellite viewing angles expected for the MODIS orbit. They estimate that
f/Q = 0.0936, 0.0944, 0.0929, and 0.0881, (standard deviation + 0.00b); #40, 500, 565, and 665
nm, respectively. Also, Gordon et al. (1988) estimates that f/Q = 0.0949, at lejst 20°. Thus, we
assume that f/Q is independentadind6, for all MODIS wavebands of interest, except perhaps for the
band centered at 667 nm.

2) t/n?is approximately equal to 0.54, and although it can change with sea-state (Austin, 1974),
it is relatively independent of wavelength.

3) Many studies have confirmed thaA) is usually much smaller thania(@nd can thus be
safely removed from the denominator of Eq. 1 (Morel and Prieur, 1977; references cited in Gordon and
Morel, 1983), except for highly turbid waters.

These three approximations lead to a simplified version of Eq. 1,

b

a(A)

()

R (4) = constant 2)
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where the "constant” is unchanging with respeétand6,. The value of the constant is not relevant to
the algorithm since, as will be shown later, the algorithm uses spectral ratige.paRd the constant
term factors out.
In the following sections, both,@.) and al) will be divided into several separate terms. Each
term will be described empirically. The equations are written in a general fashion — i.e., the empirically
derived parameters that describe each term are written as variables — and the actual values of the

parameters that are used in the algorithm are shown in Tables 1a and 1b.

3.1.2.2 Backscattering Term

The total backscattering coefficient(k), can be expanded as

by() = b, (2) +b,(3) @

where the subscripts "w" and "p" refer to water and particles, respectiygl¥) ib constant and well
known (Smith and Baker, 1981),,6.) is modeled as

5517
by (4) = X |2 (4)

The magnitude of particle backscattering is indicated by X, which is approximately equ%d o
while Y describes the spectral shape of the particle backscattering.

Lee et al[1994] empirically determined andY values by model inversion using a formula
similar to (4). TheX andY values were compared to tRg(A) values measured at each station with the
purpose of finding empirical relationships for batlandY as a function oR(A) at one or more of the
MODIS wavelengths. Once this was doKeandY could be estimated from MODIS data. These

empirical relationships are described below.

3.1.2.2.1 Expression for X

The general expression for X is

X =X, +X,R (551) (5)
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Figure 1. X versufR(551), wher&Xis the magnitude of particle backscatteringRyisl

the remote sensing reflectance at 551 nm wavelength. The line is the linear regression
equationX = —0.00182 + 2.05&R((551) (number of samples = 53,
correlation coefficient? = 0.96).

where X% and X are empirically derived constants. Linear regression performed on the derived values of
X vs. R(551) taken from four cruises to the Gulf of Mexico (CP92, Tambax 2, GOMEX, and COLOR)
resulted in X and X values of —0.00182 and 2.058 (n = 53; 0.96). Figure 1 shows the regression
graphically. If X is determined to be negative from Eq. 5 it is set to zero.

The values of Xand X that are used in this version of the Case 2 chlorophyll algorithm are
probably adequate for most of the globe and they are listed in Table 1. For regions influenced by rivers

outflows, these parameters should be determined on a site-specific basis.

3.1.2.2.2 Epression for Y

Y was found to covary in a rather general way with the rat{d43)/R(488). Variations in
numerator and denominator values of this ratio are largely determined by absorption due to
phytoplankton and CDOM. Absorption due to water is about the same and low at both wavelengths.

Thus, to the extent that phytoplankton and CDOM absorption covary, the spectral ratio of the absorption
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coefficients, a(443)/a(488), will be only weakly dependent on pigment concentration, the spectral ratio of
backscattering coefficients should have a significant effect on the spectral ratjo ¥fiRthus
represented as a linear function of4R13)/R4(488)

R (443
Y =Y (413)

o1 R (485) (6)

30 —— —— —— Ty
F ® &, 7
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Figure 2. Spectral shape of particle backscatteriivg versus
R<(443)R(488). The line is the linear regressi¥n= —1.13 + 2.57
R(443)R(488) (1= 22,r*= 0.59).

where Y, and Y, are empirically derived constants.

Accurate measurements gf’g and accurate removal of reflected skylight from the R
measurements are critical in determining Y by model inversion. Only data from the GOMEX and
COLOR cruises are used here because {A¢ @lues were determined with a long-path
spectrophotometer (Peacock et al., 1994). Linear regression of Y ve(d4d8¥R(488) for stations
from these two cruises resulted ig ahd Y, values of —1.13 and 2.57 (n = 227r0.59). Figure 2 shows
the regression graphically. If Y is determined to be negative from Eq. 6 it is set to zero. A number of
other spectral ratios of J&.) were tested, but the 443:488 ratio had the highest correlation with Y.

The Y parameter should be large when the backscattering is due to small particles and/or water
and vice versa (Gordon and Morel, 1983). In oligotrophic regions we have determined values of Y

greater than 2, while in waters with [@}l> 10 mg m? the estimated Y values are oftel®. Where
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gelbstoff concentrations are high, pigments are more packaged, so larger particles avidddwesy are

expected to occur here, even with a lack of covariation between pigment and gelbstoff absorption.

3.1.2.3 Absorption Term

The total absorption coefficient can be expanded as

a(d) =a(A) +a 2) +a d) +a(d) 7

where the subscripts "w"$;" "d," and "g" refer to water, phytoplankton, detritus, and CDOM ("g"
stands for gelbstoff). Herg@) is taken from Pope et al. (1997). Expressions for)aa,(A), and g(A)

need to be developed.

3.1.2.3.1 Expression for g

The shape of the,@) spectrum for a given water-mass will change due to the pigment-package
effect (i.e., the flattening of absorption peaks with increasing intracellular pigment concentration due to
self-shading; (Morel and Bricaud, 1981) and changes in pigment composition. For a given domain,
normalizing measured,@) curves to g675) reduces the dynamic range and results in a smooth
variation for g(1)/a,(675) vs. g(675) for the MODIS wavebands centered at412, 443, 488, 531, and
551 nm (see Figure 3) data for two high-light, subtropical regimes.

A hyperbolic tangent function was chosen to model this relationship in order to ensure that the
value of 3(1)/a,(675) approaches an asymptote at very high or very low valuggaby. Carder et al.,
1991 detail the behavior of this function with parameterization, although substi(6&8)afor the
[Chia] found in their expression. Using logarithmic scaling for both axes results in the following model

equation for gA) as a function of #675),

a(4) = ay(Aexp /al(/l)mnh /az(/l)ln /a A675)/a() / / /-a A675) 9)

where the parameterg(a) to a(A) are empirically determined for each MODIS wavelength of interest.
8(A) is the most important of these parameters, as it is directly proportionghjo &or simplicity,
only a(4) and a(A) are varied to parameterizg(#), with a(4) and g(A) being set to the constant values

of —0.5 and 0.010, respectively. Figure 3 shows the measured data and the modeled cy(ks for a
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measurements taken from the GOMEX, COLOR, and TNO048 cruises all considered to be part of the
same high-light, subtropical domain (TN048 was an expedition to the Arabian Sea during monsoon

conditions). The parameterg’a to a(A) are listed in Tables 1a and 1b.
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Figure 3. Absorption coefficients,(1)/a,(675) versusa,(675) for each
Moderate-Resolution Imaging Spectrometer (MODIS) ocean wave band. The
number at top right corner indicates wavelerigtiThe lines are described by
equation(8) using the parameters listed in Table 1, and they represent the
minimum sum of squared errors for modeled versus measured values of

a,(A)/a,(675).
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3.1.2.3.2 Expression for @gand g,

The g(A) and g(A) can both be fit to a curve of the forpi/d = a(400) exp[-YA—400)] where
the subscript "x" refers to either "d" or "g" (Bricaud et al., 1981; Roesler et al., 1989; Carder et al., 1991).
Owing to this similarity in spectral shape, these terms cannot be spectrally separated with the MODIS
channels, so the@) term is combined operationally witfy&), and both detrital and CDOM absorption

are represented by(a). The combined CDOM and detritus absorption term is thus written
a(4) =a(400) exp 54 (©)

where S is empirically determined. Many researchers have reported that®81 nm', on average
(Roesler et al., 1989). For the GOMEX and COLOR cruises, an average value of 0:0%asim
measured for S Values reported by F. Hoge (personal communication) for the Sargasso Sea were
somewhat higher as are those found near swampy regions of the Gulf of Mexico. The algorithm
performance was optimized by varying ®ith the value 0.019 nthproviding the smallest residual error
compared to field measurements. The increase in S is thought to account in part for the lack of gelbstoff
fluorescene in the algorithm, which increasg@ill2) [e.g. see Mobley, 1994].

As a final note on the Rmodel, Egs. 5-9 are written in a general way to emphasize that the
values of the parametersg, X, Y,, Y4, &, &, and S are not meant to be absolute. They should be
updated and changed as more data become available. These parameters may also be changed with region

and season to optimize algorithm performance.

3.1.2.4 Inverting the Model

All of the pieces of the reflectance model are now in place. Via Egs. 2—4, and®-0¢&h be
expressed solely as a function of the "constant” tegif#43), R(488), R(551), 3(675), and g400),
given values for the parameters faj; X;, Yo, Y1, &(A), &(A), and S. |,,(A) from MODIS can be
converted into RA) as mentioned previously. Then, for each pixel, thenBdel equation can be
written for each of the 5 available MODIS wavebands yielding five equations written in three unknowns:
the "constant” term,,&675), and g400).

Using spectral ratios of Reliminates the "constant” term, since it is largely independent of
wavelength. In principle, two spectral ratio equations can be used to solve for the two remaining
unknowns, #675) and g400). Based on the shape of the absorption curve for phytoplankton versus
those for CDOM and detritus, equations using spectral ratios of 412:443 and 443:552 fshBuld

provide a good separation of the two absorption contributions. Our two equations are
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R (412)  b,(412) a(443)
R (443)  b,(443) a(412)

(10)

R (443)  b,(443) a(551)
R (551)  b,(551) a(443)

The right-hand side of each equation is a function,(7®), g(400), R(443), R(488) and R(551).
Since the Rvalues are provided on input, we now have two equations in two unknowns. The equations
can usually be solved algebraically to provide valuesfi@7&) and g400). The computational method
of solving these equations is described in Section 3.2.1.

For waters with high concentrations of CDOM and chlorophyj41L2) and L,(443) values are
small, and the semi-analytical algorithm cannot perform properly. It is thus designed to return values
only when modeled,#675) is less than 0.03 fwhich is equivalent to [cld] of about 1.5-2.0 mg

Otherwise, an empirical algorithm for [cdllis used, which is described in Section 3.1.2.6.

3.1.2.5 Pigment Algorithm for Semi-analytical Case

When the semianalytical algorithm returns a valuaf@75), [chla] is determined via a direct
relationship to this value. This step requires knowledge of the chlorophyll-specific absorption coefficient
for phytoplankton at 675 nma, (675), for the bio-optical domain involveBricaud et al.[1995]
demonstrated a wide range of valuesap(675) using a global data set. If only surface values for waters
in a more limited bio-optical domain (e.g., tropical and subtropical waters) are examined, however, this
variability is greatly reduced. Phytoplankton found in high-light environments, for example, have
relatively low concentrations of light-harvesting accessory pigments and relatively high concentrations
of photoprotective pigments compared to plants found in samples from high latitudes, upwelling centers,
or deep in the euphotic zone. Therefore the effects of accessory pigment absorption on the variability of
the largely chlorophyld dominated red peak at 675 nm are small in high-light environments.
Furthermore, photoprotective pigments do not absorb light at 675 nm, and so they do naf(&ff&égt
even if they are present in large quantities.

To evaluate variations @f,(675) with [chla] for subtropical to tropical waters, we developed a
data set to explore the more limited variation in surface valugg (675) under high-light conditions

(see section 4.2.1 for methodology). This data set came from surface-water samples from several cruises
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in the Gulf of Mexico (BONG 1, BONG 2, BOSS 1, and WFS) and one cruise to the Arabian Sea
(TNO48). Linear regression of log([cal) versus logh,(675)] yielded an equation of the form

»
[chl a] =P, +[ a675)]" (11)
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Figure 4. The [chla] versusa,(675) in (a) logarithmic scaling and

(b) normal scaling. In both charts the dashed line is the equation [chl
a] = 56.8[a,(675)]"% which is the result of linear regression on the
log-transformed values & 96,r> = 0.97).

For the data set mentioned above, the regression resufigdridp, values of 56.8 and 1.03,

respectively f = 95,r>= 0.97 on the log-transformed values). This regression and the data are shown in
Figure 4. Within a given bio-optical domain, we find only a very weak changg(875) with [chla].

The exponent is close enough to 1.0 that little error occurs by linearizing the parameter values to 51.9

and 1.00, respectively, for that domain. This suggests an a&f#jé5) value of 0.0193 fi{mg chly*

for subtropical data sets



17
3.1.2.6 Pigment Algorithm for the Default Case
When the semi-analytical algorithm does not return a valug,67%), we provide an empirical,
two-wavelength algorithm for [cHd] to use by default. Aiken et al. (1995) found that the

L,(488)/L,(551) ratio is best for empirical [ch] determination. We use an equation of the form

log[chl a],,, =c, +c, log(rys) +c, [log(r, )] + ¢, [log(r,)]’ (12)
where
R (488)
’/’ = —_—
¥ R (551) )

[chl a],,,is called the "empirically-derived" or "default” chlorophgitoncentration, and,cc;, and ¢
are empirically derived constants.
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Figure 5. The [chla] versusR(488)R(551) in log-log scaling. The

dashed line represents a quadratic regression on the log-transformed
value and describes the default [ehhlgorithm.

A subtropical and temperate summer data set was constructed from stations from the MLML 2,
GOMEX, COLOR, and TNO042 cruises, and from stations belowNtom the TT010 cruise (Table 2).
This data set includes both open-ocean and riverine-influenced stations. Quadratic regression of log([chl
a]) against log(y) for measured [chd] and Ry(A) in this data set resulted in values p£.289, ¢=
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—3.20, ¢ = 1.20, and £= 0.00 (n = 62), yielding a root mean square (RMS) error of 0.51. The data and

the regression line are shown in Figure 5.

3.1.2.7 Weighted Pigment Algorithm

Another consideration is that there should be a smooth transition ia pdilies when the
algorithm switches from the semi-analytical to the empirical method. This is achieved by using a
weighted average of the [ca] values returned by the two algorithms when near the transition border.
When the semi-analytical algorithm returns g(6@5) value between 0.015 and 0.03,ffthl a] is

calculated as

[ehl a] =w [chl a] —+ (1 - w)[chl a]emp (14)

where [chla], is the semi-analytically-derived value and [ah,,, is the empirically derived value, and
the weighting factor is w = [0.035®75)]/0.015.

3.1.2.8 Phytoplankton and CDOM Absorption Algorithms for Default Case

When the semi-analytical algorithm does not return a valug,(67%), we provide empirical,
multi-wavelength algorithms for ,€675) and g400) based on,¢440) and g440) (Lee et al., 1998).
Using these results, the empirical, default algorithms for hj@#v&) values were determined by

adjusting Lee’s results to 675 nm for phytoplankton and to 400 nm for gelbstoff,

0.919+1.037py5 0407055 -3.531 pys

1.7020,s
a¢(675)emp =0.328+[10 -0.008] (15)

and for high g400) values,

1147 -1.963p, s -1.01 gy 10.856p,5 +1.702p5s

a(400),, = 1.5+10 (16)

emp

wherep; are log of the ratio of the remote sensing reflectance of MODIS channel i to channel j.

Again, a weighted absorption algorithm similar to Eg. 14 is used for each of these componets to
transition from the semi-analytical expression to the default expression.

The precision for the total absorption coefficients calculated empirically by Lee et al. (1998)
determined by the goodness of fit were 15.3 % , and for pigment absorption coefficients at 440 nm it was

29.1%. Transferring to 675 nm and considering global data sets will likely increase this uncertainty to
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perhaps 35% to 40%. The uncertainty of defg)#tG®) values is expected to be between 35% and 50%,

although as with the semi-analytical values, there is a paucity of data sets to firm up these estimates.

3.1.2.9 Total and Phytoplankton Absorption Coefficients
The phytoplankton absorption coefficieagA;) are calculated by inserting the modetg(575)
value into Eq. 8 and by using the necessary parameters from Tables 1a and 1b for each wavelength. The
total absorption coefficient(A;) are calculated by inserting the modetg@00) value and thg
parameter from Tables 1a and 1b into Eq.9 tagf) and then combining the result with thgA;) and
a,(A;) values using Eqg. 7 and Tables 1a and 1b, respectively.

3.2 Numerical computation

Herea,(675) anda,(400) are determined from Eq. 10 with the substitutions discussed in section
3.4. Inverting one of the equations to isolaj@00) and substituting into the other equation, all terms are
then moved to one side. This yields a function that depends orly(®r6) (given values fdr and the
algorithm parameters from Tables 1a and 1b). The valag(®75) at which the function crosses zero is
the solution we seek. This solution is determined computationally via the bisection method. A 33-
element array of,(675) values, scaled logarithmically from 0.0001 to 0.03isrcreated, and the
function is evaluated at the two extremes. If the function changes sign between the two outermost
values, a solution exists on tag675) interval. The function is then evaluated at the midpoint of the
array, and the half in which the function changes sign becomes the new search interval. In this manner
the solution interval, which will be two adjacent points onaf{€75) array, is determined in five
iterations. Linear interpolation across the interval yields the semianabj{6alb) value, and,(400) is
determined via either one of the ratio equations (Eq. 10)using the modeled \a|(&/6J. If the
function does not change sign across the two outermost values, a solution cannot be obtained and a
switch is made to the empirical, two-wavelength, default algorithm.

When compared to an older method (look-up talilesder et al, 1991]), the bisection method
gave identical solutions to within five significant digits #&g(675) anda,(400), and the code ran in 75%
of the time that the version of the code based on the look-up table required.

The algorithm code is written in American National Standards Institute (ANSI) C. The program
file contains about 300 lines of code and comments. It was developed and tested on a DEC Alpha
machine. It was also tested on Silicon Graphics, SUN, and PC machines. All of the algorithm parameters
listed in Tables 1a and 1b are read in from a file, so different parameter tables can easily be constructed

for different applications (see below). The code is available upon request.
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4.0 Algorithm Evaluation
4.1 Statistical criteria

To evaluate algorithm performance, we generated statistics that are determined on log-
transformed variables so as to provide equal weight to data from all parts of the pigment and reflectance
ranges. The slope and intercept values are from type Il RMA regressions. The RMS statistic described is
based on the root-mean-square of the logarithm of the ratio of modeled-to-measuredRleidg gt
al., 1998] and will be referred to here as RMS1. We also generated valuearfdiroot-mean-square

error on the non-log-transformed (linear) data. This statistic will be referred to as RMS2 and is described

by

" olx ~x J
2 mod,i obs,i
v a7
obs, i

RMS2 = |1

n -2

wherex,.q; is the modeled value of thith elementx,,; is the observed (or in situ or measured) value of
theith element, and is the number of elements. Note that¥f-1.0 = RMS2 if there is no bias between
the modeled and measured data. We used two graphical means of evaluating algorithm performance,

scatterplots of modeled versus observed values and quantile-quantil€®Reily et al, 1998].

4.2 Tests with University of South Florida Data
4.2.1 Methods

We initially tested our algorithm with our own subtropical and temperate-summer data set, called
the Carder data set (Table 2), since observed valug$6ats) anda,(400) are included wherever
possible to accompany the obseriR@A) and [chla] values. Also, 17 points from high-chlorophyll,
high-scattering stations, mostly from the extended Mississippi River Plume region, are included. We
later test the algorithm with globRl(1) and [chla] data collected by international research teams and
found in the NASA SeaBASS data archive.

R.(412),R(443),R(488),R(531), andR(551) for the Carder data set were derived from
hyperspectraR (1) measurements collected just above the sea surface (for measurement protocols, see
Lee et al, [1996]) by weighting to simulate the MODIS band responBases et al.1994]. Most
R<(A) measurements in the SeaBASS global database were collected from just below the sea surface
following the protocols oMueller and Austirj1995]. Both data types are combined in algorithm

performance tests against the global data.



21

All [chl a] values were determined fluorometricalyjdim-Hansen and Riemanh978;

Mueller and Austin1995]. Thea,(400) was determined by measuring seawater filtered through a 0.2 pm
pore-sized nylon filter in a spectrophotometer when compared to a MilliQ water MaeKdr and
Austin 1995].

The method used to determine absorption coefficients for particles and for detritus involves
filtering as much as 4 L of water through a 25 mm diameter, Whatman glass fiber filter (GFF). The
protocols used are those discussellireller and Austirf1995] and are based on methods developed by
Shibata[1958],Roesler et al[1989], Mitchell [1990], Nelson and Robertsda993], andMoore et al.

[1995]. In order to estimate absorption coefficients from the OD measurements, an optical path-
elongation factor, callefl, which is dependent upon OD, is employed. Recently, however, it has been
shown thaf varies with the particle size prevalent to a regidodre et al, 1995]. This happens

because smaller particles get more deeply embedded into the pad, providing a greater absorption cross
section for photons scattered back and forth across the particle substrate than do the large particles
remaining at the surface of the pad. For our work we chfida@or appropriate for small, subtropical
particles that falls between two publisHetactors, one developed for detritddelson and Robertspn

1993] and one for synechococcidore et al, 1995]. Ouf} factor is

B =10 +060D % (18)

Furthermore, we loaded the filter pads enough that the pad optical density exceeded 0.04 at 675 nm

[Bissett et a].1997] for more accuracy a(A) measurements.

4.2.2 Results

The algorithm parameters used are shown in Tables 1a and 14, g&}i675), anda,(400)
values were predicted by the semianalytical algorithm with RMS1 errors of 0.122, 0.131, and 0.252,
respectively, and with RMS2 errors of 0.289, 0.302, and 0.405, respectively (Table 4), for a largely
subtropical or temperate-summer data set.

The results are also shown as scatter and quantile plots (Figure 6). The crosses on the plots are
the points determined with the semianalytical portion of the blended algorithm, and the diamonds
represent points determined with the default or empirical algorithm. The high-chlorophyll points extend
nicely along the one-to-one line on both the scatter and quantile plots. The RMS1 and RMS2 errors for

[chl @] for this composite data set104) were 0.132 and 0.300, respectively.
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Since the default portion of the algorithm does not yet return valueg(#5) anda,(400),
these variables can not be shown for eutrophic data. An empirical expressigiif@nd a,(A) has
been developed Hyee et al[1998] and will be incorporated later into the algorithm.

The [chla] anda,(675) data appear to be quite evenly clustered about the one-to-one line on both
scatter and quantile plots with no aberrant tails at either enda,[A#) points are predominantly
below the one-to-one line and show a low bias. There are only 26 points in this plot because measured
values ofa,(400) are infrequently available for comparison. These data were subtropical except for some
late-summer, temperate data, and they had relatively large specific absorption coefficients. Thus they are

representative of the domain we designated as unpackaged.
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Figure 6. Algorithm performance for Carder data set, top observed versus modelad chl
middle observed versus mode&gg(675), and bottom observed versus mode}&tDO0) in left
scatterplots and right quantile-quantile plots. The lines are the one-to-one lines, SA (crosses)
indicates points that are calculated semianalytically or by a blend of semianalytical and
empirical values, while EMP (diamonds) indicates points that are calculated empirically.
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4.3 Tests using a global data set
4.3.1 Data Set

Data set A large (=919) global evaluation data set consisting of meadRtadlues at the
Sea-viewing Wide-field-of-view Sensor (SeaWiFS) wavelengths and chlor@méasurements based
on both fluorometric and high-performance liquid chromatography (HPLC) methods was archived by the
NASA SeaWiFS Project as the SeaBAM data €dRgilly et al, 1998]. These data came from various
researchers around the United States and Europe and contain mostly suBswéees. In addition to
these data, we have received 36 data points from the equatorial Pacific, consRtimgeafsurements
made above the surface (EqPac, courtesy of C. Davis), and we collected additional above-water data sets
from the Southern California Bight (SCB) (April 1997 with G. Mitchell), near Hawaii (February 1997
with D. Clark), and the Kuroshio edge of the East China Sea (May 1997 with G. Gong), which we have
added to the global data set. This combination of 976 data points allows for algorithm comparisons using
a data set consisting of both above-water and below-water points.

The recent SCB data set provided an opportunity to compare aboveRyadtga with the
historical California Cooperative Oceanic Fisheries Investigations (CalCoFIl) SCB sub&yutiata set
from the SCB. We also measured phytoplankton absorption spectra in the SCB in late winter to adjust
a,(A) curve parameters, providing a more “packaged” parameterization (Table 3) for modeling the

multiyear CalCOFI data set of subsurf&evalues and similar eastern boundary environments.

4.3.2 Numerical Filters

Since many different locations and sensors were involved in compiling the SeaBASS data
collections and as many as eight separate upwelling and downwelling sensor channels must be well
calibrated to provide accurate spectral ratioR ofor the semianalytical algorithm, an attempt was made
to select an initial core set of data consistettt case 1 waters and with each other. Also, an attempt
was made to partition the data sets into two regions, ones where little pigment packaging is to be
expected (e.g., high-light, nonupwelling locations in warm, tropical and subtropical waters) and one
where more packaging might be expected (e.g., eastern boundary upwelling, and nonsummer high-
latitude data). To assist in this task, each SeaBASS data set was individually examined.

Some of the data sets were composed of data largely falling into a single type of bio-optical
domain according to the numerical filters discussed below. Others spanned two or more domains. Data
sets falling primarily into the domain where the pigments appeared to be relatively unpackaged with
significant photoprotective pigments [e.qg., hagf(443) and higta,(443)/k,(675)] were first tested

using the semianalytical algorithm with the parameters shown in Tables 1a and 1b.
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The first numerical filter compares the data sets to the histeéardpn et al. 1983] CZCS
chlorophyll pigment algorithm [CHd = 1.14 [, ™", r,s = R{(443)R(550)] to check for consistency
with this classical algorithm for case 1 waters with relatively little packaging. Figures 7d, 8d, and 9d
show scatterplots of observed [elhiversus j;for different sets of warm-water data, with the CZCS
algorithm illustrated by the dotted line. The warm-water, subtropical and tropical data sets, with little in
the way of pigment packaging and probably high photoprotective to chlorophyll ratios (Figure 7d), were
found to be centered over the CZCS algorithm for pigment values less than about®1 mg m

When the CZCS algorithm was applied to data from high-latitude or eastern boundary upwelling
locations where pigments are packaged into larger cells with more self-shading (Figure 8d), however, the
CZCS-like chlorophylla values were typically 50% to 90% lower than those measured. This effect of
differing bio-optional domains on the performance of the CZCS-like algorithm suggests that regional
algorithms are needed to obtain best results for different regions or seasons as sugdistbdlbgnd
Holm-Hanser{1991].

This "filter" approach helped us separate various data sets into two domains, which we call the
unpackaged-pigment domain and packaged-pigment domain. This type of domain-selection filter,
however, cannot be applied to satellite-derived data because of the need for measuremeis of [chl
Thus a second type of numerical filter was sought that was reliant on only space-derived data.

The second numerical filter uses the ratigg= R(412)R (443)] andr,;(Figures 7b, 8b, and
9b) and is applicable to satellite-derived data. For the Carder data set thesi0e95 [,]*'° was used
to separate high-gelbstoff data points (those below the line in Figure 7b) from the case 1 data. On the
basis of the Cardex, data, the gelbstoff-rich case 2 data bgd00) values typically in excess of the
relationship 0.12 [chd]®"or a,(443) >a,(443). This line also separates case 1 data representative of
more packaged domains from those representative of less packaged domains since fhis tatis
affected by packaging effects thamjs Thus, for waters far from terrigenous influences, the second
filter provides a flag for packaging effects.

Case 1 waters with more packaged pigments from a traditional upwelling region (e.g., CalCOFI)
were also examined using the second numerical filter. These data fell mostly below the filter line (Figure
8b) in comparison to the unpackaged data, which fell mostly above the line (Figure 7b). Since pigment
packaging reduces the absorption for a given concentration of pigments far more at 443 than at 551 nm,
and somewhat more at 443 than at 412 Morgl and Bricaud 1981], packaging and reduction of
photoprotective pigments significantly increasgsvhile increasing the,, ratio somewhat. This places
packaged data points below the= 0.95 [,|>*°line (Figure 8b) even without excessive gelbstoff

concentrations, at least for points withvalues in excess of a value of about 3.0. Filter 2, then, provides
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a space-based method for separating data points with packaged pigments from those with unpackaged
pigments, at least for the oligotrophic end of the data sets.

Filter 2, however, can be distorted by a poorly calibrated sensor or by inaccurate atmospheric
correction, so it is inadvisable to use it exclusively as a packaging filter without some means of providing

an independent check on its performance. A means of accomplishing this task is found in section 6.

4.4 Algorithm evaluation with the "unpackaged" data set

Those data sets generally found to be consistent with the CZCS algorithm line and which were
located primarily above the ling, = 0.95 f,]°®for points where,; > 3.0, were numerically classified
as unpackaged, in reference to the pigment-absorption effects on the optics prevalent at those locations at
the time of data collection. Those data sets with hjgheints largely below the line were classified as
packaged, and a test of a packaged algorithm is developed and discussed below. Those data sets with
high+,5 points fairly equally divided by the line were withheld from the tests of both the unpackaged and
packaged algorithm, but they were included as part of the test of a global algorithm developed and
discussed below.

There are 287 data points in the unpackaged ensemble data set: 134 USF data points and 37
EgPac, equatorial Pacific points, all measured above water and processed uswegethal [1996]
protocols, and an additional 126 EgPac points, all measured below the surface udingllgreand
Austin[1995] protocols. Of these points, 261 (91%) were processed by the semianalytical portion of the
[chl &] algorithm, yielding RMS1 and RMS2 errors of 0.099 and 0.230, respectively (Table 4). The
scatter (Figure 7a) and quantile (Figure 7c) plots overlay the one-to-one line at the ends as well as in the
middle. For the log-transformed variables, the type Il RMA slope was 0.999, the bias was 0.002, and the
correlation coefficient® was 0.873. When all 287 data points were considered using the semianalytical
algorithm plus the blended and empirical algorithms, RMS1 and RMS2 errors were 0.108 and 0.242,
respectively. The type Il RMA slope was 0.973, the bias was -0.008? aras 0.955. Note that for this
unpackaged data set, the transition from the semi-analytic to the default algorithm is reasonably smooth
(Figure 7c).

Table 4 provides a complete summary of these statistics. Note that since these algorithms are
largely semianalytical in nature and were developed based mostly upon Gulf of Mexico data for the
parameterization, one would not expect to have slope values of 1.000 and bias values of 0.000. Note also
that ther? values increased using the blended algorithm because of the extended range of chéoibphyll
is important to note that RMS2 errors of less than 25% significantly exceed our accuracy goal of 35% or

less.
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4.5 Algorithm evaluation with the "packaged" data set

Several data sets within the global evaluation set were numerically diagnosed as coming from
waters where the pigments were much more packaged than those from the warm, tropical and subtropical
data sets evaluated earlier. The new packaged parameters, shown in Table 3, are used to define a slightly
different, packaged algorithm for upwelling and winter-spring temperate regions.

There are 326 points in an ensemble of multiyear, multiseason data sets from the California
Current which we label as packaged. These consist of historical CalG€3eRB]) and recent Cal9704
(n=23) data which we recently collected with G. Mitchell. The CalCRFdata were subsurface
measurements, while the Cal9704 data were above-surface collections. Three hundred and three points
(93%) from this packaged data set passed the semianalytical portion of the new algorithm, yielding
RMS1 and RMS2 errors for [ch] retrieval of 0.111 and 0.268, respectively. The type Il RMA slope
and intercept was 0.999, the bias was -0.006, and tlsue was 0.917. The scatterplot (Figure 8a)
overlays the one-to-one line, and the quantile plot (Figure 8c) is linear and overlies the one-to-one line
but has a slight discontinuity near a chlorophyll value of 3. This indicates that some parameter
modifications for the packaged algorithm are needed in this transition region.

Using the blended algorithm on 326 data pointsyilecreased to 0.951 while the other
statistics remained about the same (Table 4). The RMS2 error of about 28% for the packaged algorithm

also is better than our accuracy goal of 35% or less.

4.6 Algorithm evaluation with a global data set

To generate an algorithm to smoothly transition between regions and periods where there are
packaged and unpackaged pigments, we developed a global data set combining the packaged,
unpackaged, and other mixed data sets from the SeaBASS archive. This data set has 976 data points.
We then developed a set of compromise parameters for this global-average algorithm, shown in Table 3,
for use at times and places where packaging is unknown or transitional. For this data set and these
average parameters, 883 (90.5%) of the points passed the semianalytical portion of the algorithm,
yielding RMS1 and RMS2 errors in algorithm-derived [ghtf 0.176 and 0.446, respectively. The type
Il RMA slope was 1.003, the bias was 0.002, enslas 0.852. Statistics for the entired76 set were
similar, except? was higher (0.913) (Table 4). The scatterplot (Figure 9a) looks evenly clustered about
the one-to-one line, and the quantile plot (Figure 9c¢), though sinuous, overlays the one-to-one line for the
most part. Again, the results from the semianalytical algorithm fall below those for the default algorithm
near the transition region. This can be alleviated by reducing the "blending" domain from 0.015 <
a,(675) < 0.03 to 0.008 &,(675) < 0.015.
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aversus,, with the Coastal Zone Color Scanner (CZCS) algorithmGire 1.14 5] ~™
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Figure 9. Algorithm performance for and analysis of global data sets without partitioning into
“packaged” or “unpackaged” subsets. (a) Scatterplot of observed versus modeléughl
m™). The dashed line is the one-to-one line. (b) Mh&ersusr,s, with the line,r;, =
0.95[r,5]>*%, used to identify “unpackaged” case 1 data (above line). (c) Quantile-quantile plot
of observed versus modeled ehl(d) Observed cld versug s, with the Coastal Zone Color
Scanner (CZCS) algorithm lif@= 1.14f,5 ™"
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If we are unable to accurately specify the packaging domains of the world ocean, such a
compromise global algorithm with about 44% accuracy is likely to be the best accuracy that can be
achieved. This does not meet our accuracy goal of 35% or better, so a focused effort is being made to
develop an accurate sorting mechanism based on space-derived data to define the bio-optical domains of

the ocean on a spatial and temporal basis.

5.0 Discussion

The biggest limitation to algorithm development for the global ocean is a paucity of bio-optical
field data from around the globe that are complete with ancillary particle and gelbstoff absorption spectra
and auxiliary data such as sea-surface temperature, salinity, and nutrients. These data are needed in order
to assess the spatial and temporal variation in the key algorithm parae¥iS:and, most important,
ay(A) anday(A). In order to derive [cH], it is vitally important to be able to predict how tgA)/[chl
a] ratio varies. Thus we must study the effect of light history, which is related to season, cloudiness, and
latitude, as well as nutrient history, which is influenced by mixed-layer depth, upwelling, river plumes,
and offshore/onshore proximity.

While algorithms appropriate for regions with strictly packaged or unpackaged pigments can
reduce the uncertainty in chlorophgltoncentration from perhaps 45-50% to less than 30%, methods
based upon space-derived data that determine when and where to apply the appropriate parameterization
are still under development. One method using space-derived data numerical filter 2 has already been
discussed, but it is only definitive for waters whege> 3.0. Also, stations with high gelbstoff
concentrations can cause confusion using this method, and inaccurate atmospheric correction can cause
confusion using this method on any given day. For offshore oligotrophic to mesotrophic waters, however,
it is a very useful diagnostic tool if used under clear atmospheric conditions.

A second space-based approach uses the fact that unpackaged pigments are usually found in
high-light, nutrient-poor waters where small-diameter phytoplankton cells predominateléeldand et
al., 1985;Carder et al, 1986]. Since dissolved nutrients cannot be detected from space, a nutrient
surrogate was sough€amykowsk[1987] developed a model that explained much of the covariance
observed between upper layer temperatures and nitrate concentratiot@faykowski and Zentaya
1986]. D. Kamykowski (personal communication, 1998) has since developed nitrate-depletion
temperatures (NDTSs) for the North Atlantic Ocean. The nitrate-depletion temperature is defined as that
temperature at which nitrate could no longer be detected, at least using techniques of the era from about
1960-1985. These NDTs provide a means to observe from space a variable that indicates when and where

nitrate may be limiting phytoplankton growth and where upper layer production is dependent upon
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recycled nitrogen. Such phytoplankton are typically sniédirbland et al. 1985] with unpackaged
pigments Carder et al, 1986].

To delimit regions of the North Atlantic Ocean that likely contain unpackaged pigments, we have
compared sea-surface temperatures to Kamykowski's NDTs. Figure 10 shows annual trends in sea-
surface temperature, CZCS pigment, and NDTs for the Gulf of Maine, Bermuda, and Barbados. The
temperatures and pigments are 4-year (1982-85) monthly averages from the Advanced Very High
Resolution Radiometer (AVHRR) and CZCS sensors archived by the Jet Propulsion Laboratory, Physical
Oceanography, satellite data archive (USA_NASA_JPL_PODAAC_A005). Note that based on this
approach, waters in the Gulf of Maine are rarely designated as being nitrogen limited, and those near
Barbados are always designated as being nitrogen limited, while those near Bermuda are designated as
being limited in the summer and unlimited in the winter-spring. Clearly, the Gulf of Maine is a lower-
light, higher-nutrient environment than are Bermuda and Barbados, so the degree of packaging there is

likely to be much higher.

6.0 Strategy for Implementation of Variable Package Parameters

By analyzing bio-optical data in the SeaBASS archive, some preliminary functional relationships
between the NDTs and pigment-packaging classifications for the north Atlantic Ocean were empirically
derived using sea-surface temperature (SST) derived from the AVHRR satellite sensor: (1) unpackaged
domain: SST > NDT + 3°C, (2) transitional or global domain: NDT +1@ < SST < NDT + 3.0C,
and (3) packaged domain: SST < NDT +°1C8

These domains for the months of February and August are shown for an El Nifio year (1983) and
a normal year (1985) in Plate 1, based upon climatological sea-surface temperatures. Here the tropics and
most of the subtropics apparently contain phytoplankton with unpackaged pigments, except in the
northwest African, Peruvian, and equatorial upwelling regions. Here transitional and packaged pigments
can be observed during part of the year. High-latitude regions are mapped with this method as packaged
and perhaps even hyperpackaged domains, gradually transitioning toward the equator into the
unpackaged domain again. Note the marked difference in the domains between El Nifio and “normal”
years, especially in the tropics and subtropics.

Using AVHRR SST data from the physical oceanographic data archive, bio-optical data from
SeaBASS for a cruise crossing several domains were sorted by domain using NDTs. Data for the
transition period from spring to summer from the NASA SeaBASS archive were sorted into the three bio-
optical domains, and the appropriate algorithm parameterization was applied to derive chlarophyll

values. May Atlantic Meridional Transect (AMT 4) data along\20longitude, North Sea data and
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MLML2 data collected in July, and GOMEX1 and GOMEX2 data collected in April and June provide a
diverse set of north Atlantic observations that were sorted by the NDT filter and processed. The results
(Figure 11) are compared with those obtained by simple use of the global (transitional) algorithm. The
RMS1 and RMS2 errors for this diverse data set were 0.153 and 38%, respectively, for domain-sorted
data, while the errors grew to 0.186 and 50%, respectively, when all were processed using global or
transitional parameters for the algorithm without sorting by domain.

Since the spring-summer transition and eastern basin, upwelling data are perhaps the least
predictable in terms of pigment packaging, the error reduction observed of 12% is indicative of the
improvements that can be made by sorting ocean color data into bio-optical domains before applying
algorithms. A community-wide effort to evaluate and modify this approach for other regions is an on-

going task.

6.1 Test of MODIS Algorithms with SeaWiFS Data

A major end-to-end test of all MODIS Ocean Team products was undertaken under the direction
of Dr. Robert Evans at the University of Miami using prototype MODIS processing software. SeaWiFS
data were modified to match Level 1 data from the MODIS data stream and processed. This processing
included atmospheric correction and production of Level 2, 3, and 4 products. All data products
discussed under ATBD19 were successfully processed for a 2-day simulation of global data. These
included g(675), g(400), [chla], a(412), a(443), a(490), a(532), and a(551). These products were
successfully passed on for processing of absorbed radiation by phytoplankton (MOD22) and fluorescence
efficiency (MODZ20).
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7.0 Conclusions

A MODIS semianalytical algorithm for chlorophylwas tested using a total of 976 global data
points from regions where the pigments were typically unpackaged, packaged,or transitional with
appropriate algorithm parameters applied for each data type. The "unpackaged" type consisted of data
sets that were generally consistent with the case 1 CZCS algorithm and consisted mostly of tropical,
subtropical, and summer temperate data. This algorithm type was parameterized using Gulf of Mexico
and Arabian Sea data. The "packaged" type consisted of eastern boundary upwelling data sets containing
somewhat more packaged pigments. The packaged data sets were processed with the algorithm modified
for phytoplankton-absorption parameters that were consistent with those of the South California Bight
study area. This resulted in two fairly equally divided data sets totaling 604 points. That left 372 data
points that were not well enough characterized to classify.

The semianalytical (SA) algorithm for chlorophglperformed well on each of the data sets after
classification, resulting in RMS1 errors of 0.099 and 0.111 (e.g., 0.10 log unit) for the unpackaged and
packaged data classes, respectively, with little bias and with slopes near 1.0. RMS2 errors for the
algorithms were 23% and 27%, respectively. The SA algorithm for phytoplankton absorption provided
data accurate to about 30%.

While these numbers are excellent, one must bear in mind what misclassification does to the
chlorophyll results. Using parameters for an average or transitional domain in the semianalytical MODIS
algorithm with the global data set5976) yielded an RMS2 error of 44.6%, while applying the
unpackaged parameters on the global evaluation data set yielded an RMS2 error of 92%. So, without
classification, the algorithm performs better globally using the average parameters than it does if
misclassification occurs.

For the difficult transition period between spring and summer, a data set was tested that included
the eastern boundary region of the North Atlantic. Nitrogen-depletion temperatures were used with
AVHRR-derived sea-surface temperatures to sort stations into packaged, unpackaged, and transitional
domains. RMS2 errors dropped from 50% to 38% as a result of this data-sorting exercise. Since large
regions of the subtropical and tropical Atlantic, Pacific, and Indian Oceans remain in the unpackaged
bio-optical domain during all seasons and provide stable data accuracies from 24% to 28%, it is
reasonable to expect that use of an NDT-based sorting algorithm with MODIS sea-surface temperatures
to separate data into appropriate bio-optical domains will result in accuracies for the MODIS

semianalytical chlorophyH algorithm that are significantly lower than our target value of 35%.
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Plate 1.Bio-optical domains for the global ocean based 83 and 1985 monthly mean temperature
compared to nitrate-depletion temperatures (NDTSs) for (a) February and (b) August. Here black, blue,
green, and yellow regions depict land, packaged, transitional, and unpackaged domains, respectively.
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Plate 1. (Continued)
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8.0 Output Products

Output products from MOD19 will include the following:

1. Concentration of chlorophydl for concentrations from .02 to 50 mg/far optically deep
waters.

2. The absorption coefficient at 400 nmy(480) due to gelbstoff or colored, dissolved organic
matter. All absorption coefficientg(a) for 400 <A < 700 nm can then be estimated with knowledge of
the spectral slope parameter S.

3. The absorption coefficient at 443 niy4a&3), due to phytoplankton; this is passed along to
MOD20 for calculation of gA) for the visible spectrum as a contribution to the absorbed radiation by
phytoplankton, ARP, used for fluorescence efficiency calculations.

4. The sum of g 1), g(A), and g(A) provides the total absorption coefficient spectrugi)a
and the diffuse attenuation spectrunfik= a(1) / cos ¢. See MOD20.
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Table 1a. Wavelength-Dependent Parameters for the Semi-analytical Chlorophyll Algorithm for

Regions Without Packaged Pigments.

wavelength

A 412 443 488 510 551
by, (M) 0.003341 0.002406 0.001563 0.001313 0.00092p
a, (M) 0.00480 0.00742 0.01632 0.03181 0.05910Q

3 2.20 3.59 2.27 1.40 0.42

& 0.75 0.80 0.59 0.35 -0.22

& -0.5 -0.5 -0.5 -0.5 -0.5

& 0.0112 0.0112 0.0112 0.0112 0.0112

Table 1b. Wavelength-Independent Parameters for the Semianalytical Chlorophyll Algorithm for

Regions Without Packaged Pigments.

wavelength independent parameters
Xo —0.00182 S 0.0225 oC 0.2818
X, 2.058 R 51.9 G —2.783
Yo -1.13 ¢] 1.00 G 1.863
Y, 2.57 G —2.387
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Table 2 List of cruises with optical and bio-optical data collected by the University of South Florida

(Carder data set) for initial tests of the unpackaged algorithm.

cruise start date end date region # statiouws
MLML 2 13 Aug 91 29 Aug 91 North Atlantic, 4N—-60°N 7

TTO10 20 Jul 92 02 Aug 92 North Pacific, 248N 10
GOMEX 10 Apr 93 19 Apr 93 Northern Gulf of Mexico 21
COLOR 31 May 93 09 Jun 93 Northern Gulf of Mexico 13
TNO42 29 Nov 94 18 Dec 94 Arabian Sea 12
TNO48 21 Jun 95 13 Jul 95 Arabian Sea 41

Table 3. Algorithm parameters used with the "packaged" and modified global data sets. All algorithm

Total numbéord s&at04

parameters not listed here are the same as in Table 1b. The valy&} sti@vn apply to all of the

MODIS wavelengths. The equation to determineadinbm g,(675) for this data set is given by

Equation 11.

parameter | packaged global
3(412) 1.90 1.95
a,(443) 2.70 2.95
a,(488) 1.90 1.99
a(A) -0.45 -0.5
a(A) 0.021 0.025
Do 74.1 72.4
o} 1.0 1.0
o8 0.0 0.0
Co 0.4818 0.3147
C, —2.783 —2.859
C, 1.863 2.007
C, —2.387 —-1.730
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Table 4. Summary of regression statistics for each data set tested. The unpackaged data consists of the
Carder, EqPac above-surface, EqPac below-surface, Taiwan, and MOCE3 data sets. The packaged data
consists of the CalCOFI, and CAL9704 data sets. The global data consists of the global evaluation data
set, minus the Cota and U. Maryland data plus the high-chlorophyll Carder, EqPac above-surface,
Taiwan, and MOCES3 data, and uses one set of average algorithm parameters for the whole data set. SA
indicates that only the modeled values that passed the semi-analytical portion of the algorithm are used
(including blended values). SA+EMP indicates that all modeled values—semi-analytical, blended, and

empirical—are used. All statistics except RMS2 are calculated frogttagsformed variables.

data set variable n intercept  slopg biag 2 R] RMS1 | RMS2
Carder chl SA 86 0.019 1.02¢ 0.01d 0941 0.132 0.489
Carder chl SA+EMP | 104 -0.007 0.97f -0.0q2 0.9¢3 0.1B2  0/800
Carder a(675) SA 82 0.098 1.052 -0.004 0.89p 0.131 0.3p2
Carder a400) SA 26| -0.278 0.905 -0.18¢ 0.75L 0.242  0.405
unpackaged chl SA 26 0.001 0.99p 0.00p 0.8f3 0.009 0fp30
unpackaged| chl SA+EMP| 278 -0.019| 0973 -0.0¢3 095 0.108 0§242
packaged chl SA 303 -0.006 099 -0006 0947 0.1f1 0p68
packaged chl SA+EMP| 32¢ 0.004 1.01p -0.043 0.9p1 0.]Il4 0lp82
global chl SA 883 0.002 1.009] 0004 o8k 0176 0446
global chl SA+EMP | 976 0.003 1.003 0.007 0913 0.174  0.440




